qualitative and quantitative header
Marcie Hopkins, U of U Health.
improvement
Understanding Quantitative and Qualitative Approaches
Quantitative and qualitative methods are the engine behind evidence-based knowledge. Tallie Casucci, Gigi Austria, and Barbara Wilson provide a basic overview of how to differentiate between the two.

Case Study

Hong is a physical therapist who teaches injury assessment classes at the University of Utah. With the recent change to online for the remainder of the semester, Hong is interested in the impact on students’ skills acquisition for injury assessment. He wants to utilize both quantitative and qualitative approaches—he plans to compare previous student test scores to current student test scores. He also plans to interview current students about their experiences practicing injury assessment skills virtually. What specific study design methods will Hong use?

Making sense of the evidence

W

hen conducting a literature search and reviewing research articles, it is important to have a general understanding of the types of research and data you anticipate from different types of studies.

In this article, we review two broad categories of study methods, quantitative and qualitative, and discuss some of their subtypes, or designs, and the type of data that they generate.

Quantitative vs. qualitative approaches

Quantitative

Qualitative

Objective and measurable Subjective and structured
Gathering data in organized, objective ways to generalize findings to other persons or populations. When inquiry centers around life experiences or meaning. Explores the complexity, depth, and richness of a particular situation.

Quantitative is measurable. It is often associated with a more traditional scientific method of gathering data in an organized, objective manner so that findings can be generalized to other persons or populations. Quantitative designs are based on probabilities or likelihood—it utilizes ‘p’ values, power analysis, and other scientific methods to ensure the rigor and reproducibility of the results to other populations. Quantitative designs can be experimental, quasi-experimental, descriptive, or correlational.

Qualitative is usually more subjective, although like quantitative research, it also uses a systematic approach. Qualitative research is generally preferred when the clinical question centers around life experiences or meaning. Qualitative research explores the complexity, depth, and richness of a particular situation from the perspective of the informants—referring to the person or persons providing the information. This may be the patient, the patient’s caregivers, the patient’s family members, etc. The information may also come from the investigator’s or researcher’s observations. At the heart of qualitative research is the belief that reality is based on perceptions and can be different for each person, often changing over time.

Study design differences

Quantitative

Qualitative

  • Experimental – cause and effect (if A, then B)
  • Quasi-experimental – also examines cause, used when not all variables can be controlled
  • Descriptive – examine characteristics of a particular situation or group
  • Correlational – examine relationships between two or more variables
  • Phenomenological – examines the lived experience within a particular condition or situation
  • Ethnographic – examine the culture of a group of people
  • Grounded theory – using a research problem to discover and develop a theory

Quantitative design methods

Quantitative designs typically fall into four categories: experimental, quasi-experimental, descriptive, or correlational. Let’s talk about these different types. But before we begin, we need to briefly review the difference between independent and dependent variables.

The independent variable is the variable that is being manipulated, or the one that varies. It is sometimes called the ‘predictor’ or ‘treatment’ variable.

The dependent variable is the outcome (or response) variable. Changes in the dependent variables are presumed to be caused or influenced by the independent variable.

Experimental

In experimental designs, there are often treatment groups and control groups. This study design looks for cause and effect (if A, then B), so it requires having control over at least one of the independent, or treatment variables. Experimental design administers the treatment to some of the subjects (called the ‘experimental group’) and not to others (called the ‘control group’). Subjects are randomly assigned—meaning that they would have an equal chance of being assigned to the control group or the experimental group. This is the strongest design for testing cause and effect relationships because randomization reduces bias. In fact, most researchers believe that a randomized controlled trail is the only kind of research study where we can infer cause (if A, then B). The difficulty with a randomized controlled trial is that the results may not be generalizable in all circumstances with all patient populations, so as with any research study, you need to consider the application of the findings to your patients in your setting. 

Quasi-experimental

Quasi-Experimental studies also seek to identify a cause and effect (causal) relationship, although they are less powerful than experimental designs. This is because they lack one or more characteristics of a true experiment. For instance, they may not include random assignment or they may not have a control group. As is often the case in the ‘real world’, clinical care variables often cannot be controlled due to ethical, practical, or fiscal concerns. So, the quasi experimental approach is utilized when a randomized controlled trial is not possible. For example, if it was found that the new treatment stopped disease progression, it would no longer be ethical to withhold it from others by establishing a control group.

Descriptive

Descriptive studies give us an accurate account of the characteristics of a particular situation or group. They are often used to determine how often something occurs, the likelihood of something occurring, or to provide a way to categorize information. For example, let’s say we wanted to look at the visiting policy in the ICU and describe how implementing an open-visiting policy affected nurse satisfaction. We could use a research tool, such as a Likert scale (5 = very satisfied and 1 = very dissatisfied), to help us gain an understanding of how satisfied nurses are as a group with this policy.

Correlational

Correlational research involves the study of the relationship between two or more variables. The primary purpose is to explain the nature of the relationship, not to determine the cause and effect. For example, if you wanted to examine whether first-time moms who have an elective induction are more likely to have a cesarean birth than first-time moms who go into labor naturally, the independent variables would be ‘elective induction’ and ‘go into labor naturally’ (because they are the variables that ‘vary’) and the outcome variable is ‘cesarean section.’ Even if you find a strong relationship between elective inductions and an increased likelihood of cesarean birth, you cannot state that elective inductions ‘cause’ cesarean births because we have no control over the variables. We can only report an increased likelihood.   

Qualitative design methods

Qualitative methods delve deeply into experiences, social processes, and subcultures. Qualitative study generally falls under three types of designs: phenomenology, ethnography and grounded theory.

Phenomenology

In this approach, we want to understand and describe the lived experience or meaning of persons with a particular condition or situation. For example, phenomenological questions might ask “What is it like for an adolescent to have a younger sibling with a terminal illness?” or “What is the lived experience of caring for an older house-bound dependent parent?”

Ethnography

Ethnographic studies focus on the culture of a group of people. The assumption behind ethnographies is that groups of individuals evolve into a kind of ‘culture’ that guides the way members of that culture or group view the world. In this kind of study, the research focuses on participant observation, where the researcher becomes an active participant in that culture to understand its experiences. For example, nursing could be considered a professional culture, and the unit of a hospital can be viewed as a subculture. One example specific to nursing culture was a study done in 2006 by Deitrick and colleagues. They used ethnographic methods to examine problems related to answering patient call lights on one medical surgical inpatient unit. The single nursing unit was the ‘culture’ under study.

Grounded theory

Grounded theory research begins with a general research problem, selects persons most likely to clarify the initial understanding of the question, and uses a variety of techniques (interviewing, observation, document review to name a few) to discover and develop a theory. For example, one nurse researcher used a grounded theory approach to explain how African American women from different socioeconomic backgrounds make decisions about mammography screening. Because African American women historically have fewer mammograms (and therefore lower survival rates for later stage detection), understanding their decision-making process may help the provider support more effective health promotion efforts. 

Conclusion

Being able to identify the differences between qualitative and quantitative research and becoming familiar with the subtypes of each can make a literature search a little less daunting.

Take the quiz

This article originally appeared July 2, 2020. It was updated to reflect current practice on March 21, 2021.

Contributors

Barbara Wilson

Associate Professor, College of Nursing, University of Utah Health

Mary-Jean (Gigi) Austria

Magnet Program Director, Nursing Support Services, University of Utah Health

Tallie Casucci

Assistant Librarian, Marriott Library, University of Utah

Subscribe to our newsletter

Receive the latest insights in health care equity, improvement, leadership, resilience, and more.